Increased glomerular permeability to negatively charged Ficoll relative to neutral Ficoll in rats.
نویسندگان
چکیده
It is established that the glomerular filter sieves macromolecules based on their size, shape, and charge. Anionic proteins are thus retarded compared with their neutral or cationic counterparts. However, recent studies have indicated that charge effects are small, or even "anomalous," for polysaccharides. We therefore investigated the impact of charge on the glomerular permeability to polysaccharides by comparing sieving coefficients (theta; primary urine-to-plasma concentration ratio) for negatively charged, carboxymethylated (CM) FITC-Ficoll and FITC-dextran with their neutral counterparts. For these probes, theta were determined in anesthetized Wistar rats [269 +/- 2.7 g (+/-SE; n = 36)], whose ureters were cannulated for urine sampling. The glomerular filtration rate was assessed using FITC-inulin. Polysaccharides were constantly infused, and after equilibration, urine was collected and a midpoint plasma sample was taken. Size and concentration determinations of the FITC-labeled polysaccharides were achieved by size-exclusion HPLC (HPSEC). For CM-Ficoll, theta was significantly increased (32 times at 55 A) compared with that of uncharged Ficoll. A small increase in theta for CM-dextran compared with neutral dextran was also observed (1.8 times at 55 A). In conclusion, negatively charged Ficoll relative to neutral Ficoll was found to be markedly hyperpermeable across the glomerular filter. Furthermore, negatively charged Ficoll was observed to be larger on HPSEC compared with its neutral counterpart of the same molecular weight. It is proposed that the introduction of negative charges in the "dendrimeric," cross-linked Ficoll molecule may alter its configuration, so as to make it more extended, and conceivably, more flexible, thereby increasing its glomerular permeability.
منابع مشابه
Reduced diffusion of charge-modified, conformationally intact anionic Ficoll relative to neutral Ficoll across the rat glomerular filtration barrier in vivo.
The glomerular filtration barrier (GFB) is commonly conceived as a negatively charged sieve to proteins. Recent studies, however, indicate that glomerular charge effects are small for anionic, carboxymethylated (CM) dextran vs. neutral dextran. Furthermore, two studies assessing the glomerular sieving coefficients (θ) for negative CM-Ficoll vs. native Ficoll have demonstrated an increased glome...
متن کاملBasal lamina secreted by MDCK cells has size- and charge-selective properties.
The role electrical charge plays in determining glomerular permeability to macromolecules remains unclear. If the glomerular basement membrane (GBM) has any significant role in permselectivity, physical principles would suggest a negatively charged GBM would reject similarly charged more than neutral species. However, recent in vivo studies with negative and neutral glomerular probes showed the...
متن کاملDynamic, size-selective effects of protamine sulfate and hyaluronidase on the rat glomerular filtration barrier in vivo.
The proteinuric actions of protamine sulfate (PS) have classically been, at least partly, attributed to alterations of the negatively charged glomerular endothelial glycocalyx. To investigate whether the charge-selective properties of the glomerular filtration barrier (GFB) would be altered by PS, we assessed the glomerular sieving of conventional, uncharged, polydispersed Ficoll (n-Ficoll) com...
متن کاملAnomalous fractional clearance of negatively charged Ficoll relative to uncharged Ficoll.
Recent studies, using low-temperature perfusion of rat kidneys, have claimed the existence of renal charge selectivity simply on the basis of the differential excretion rates of uncharged Ficoll and charged proteins. To test for the existence of charge selectivity in vivo, we examined the clearance of negatively charged Ficoll compared with uncharged Ficoll. A short-term approach to steady stat...
متن کاملQuantification of the electrostatic properties of the glomerular filtration barrier modeled as a charged fiber matrix separating anionic from neutral Ficoll.
In the current study we explore the electrostatic interactions on the transport of anionic Ficoll (aFicoll) vs. neutral Ficoll (nFicoll) over the glomerular filtration barrier (GFB) modeled as a charged fiber matrix. We first analyze experimental sieving data for the rat glomerulus, and second, we explore some of the basic implications of a theoretical model for the electrostatic interactions b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 291 5 شماره
صفحات -
تاریخ انتشار 2006